DESIGN THINKING FOR A CLEAN TECH FUTURE

KIM TANZER
DEAN, SCHOOL OF ARCHITECTURE
UNIVERSITY OF VIRGINIA

WHAT IS "DESIGN THINKING"?

SCIENCE TELLS US WHAT IS. DESIGN TELLS US WHAT COULD BE.

"EVERYONE DESIGNS WHO DEVISES COURSE OF ACTION AIMED AT CHANGING EXISTING SITUATIONS INTO PREFERRED ONES."

HERBERT SIMON

WHAT IS "DESIGN THINKING"?

ESTABLISH PARAMETERS

GENERATE ALTERNATIVES (NO JUDGMENT)

EVALUATE, ITERATE, REFINE (MULTI-FACTORIAL JUDGMENT, INCLUDING AESTHETIC JUDGEMENT)

AH-HA MOMENTS

CONCLUDE PROJECT

....

OVER TIME, EVALUATE PROJECT

WHEN APPROPRIATE, REPEAT (VERNACULAR, CONVENTIONAL WISDOM)

WHAT IS "DESIGN THINKING"?

ABDUCTIVE THINKING (PEARCE)

LATERAL THINKING (DI BONO)

CREATIVE THINKING (PINK)

ASSOCIATIVE THINKING (BATESON)

Men die. Socrates is a man. Socrates will die.

The Barbara Syllogism: Subjects address classification.

Grass dies. Men die. Men are grass.

Affirming the Consequent: Predicates address relationships. (Bateson)

CO2 EMISSIONS WILL BE REDUCED OR ELIMINATED

CO2 EMISSIONS WILL BE REDUCED OR ELIMINATED

+/OR

OTHER POLLUTANTS GENERATED BY FOSSIL FUELS WILL BE REDUCED OR ELIMINATED

CO2 EMISSIONS WILL BE REDUCED OR ELIMINATED

+/OR

OTHER POLLUTANTS GENERATED BY FOSSIL FUELS WILL BE REDUCED OR ELIMINATED

+/OR

"COLLATERAL DAMAGE" WILL BE REDUCED OR ELIMINATED

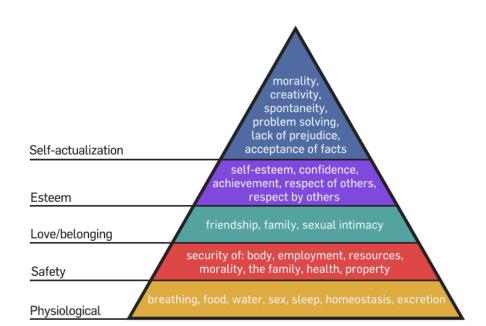
"COLLATERAL DAMAGE" WILL BE REDUCED OR ELIMINATED

NO MORE COAL SLUDGE SPILLS IN TENNESSEE

NO MORE MOUNTAIN-TOP REMOVAL IN WEST VIRGINIA

NO MORE OIL SPILLS IN ALASKA

NO MORE THREATS OF POLAR BEAR EXTINCTIONS

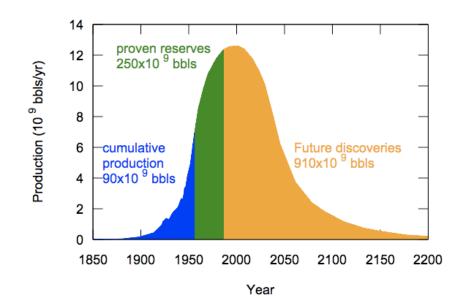

NO MORE OIL INDUSTRY INDUCED CIVIL UNREST IN WEST AFRICA

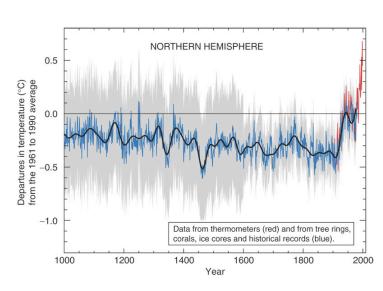
ASSUMPTION 1:

CLEAN TECHNOLOGY WOULD UTILIZE CURRENT SOLAR INCOME (ELIMINATING THE PROBLEMS OF EXTRACTING FOSSIL FUELS, AND OF THE POLLUTANTS CREATED BURNING THEM)

ASSUMPTION 2:

CLEAN TECHNOLOGY WOULD PROVIDE A HIGH QUALITY OF LIFE FOR ALL PEOPLE ON THE PLANET

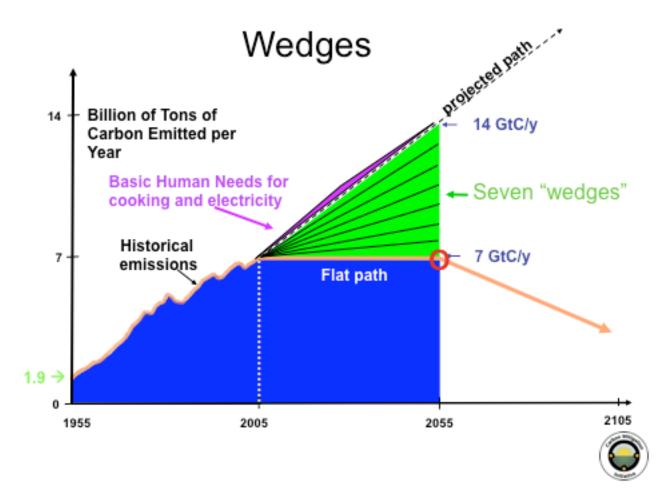



Maslow's Hierarchy of Needs

ASSUMPTION 3:

CLEAN TECHNOLOGY WOULD REPLACE THREATENED SUPPLIES OF FOSSIL FUELS

(EXACERBATED BY THE U.S. REJECTION OF THE KYOTO PROTOCOL, 9/11 AND RESULTING GEOPOLITICAL INSTABILITY, HURRICANE KATRINA, PEAK OIL ASSUMPTIONS, AL GORE'S ADVOCACY ON THE SUBJECT OF CLIMATE CHANGE)


TWO ALTERNATIVES:

INCREMENTAL IMPROVEMENT THROUGH DESIGN
TRANSFORMATIONAL IMPROVEMENT THROUGH DESIGN

INCREMENTAL IMPROVEMENT THROUGH DESIGN: SOCOLOW'S WEDGE AND FRITO LAY

GENERATE ALTERNATIVES (NO JUDGMENT)

From: Stabilization Wedges:

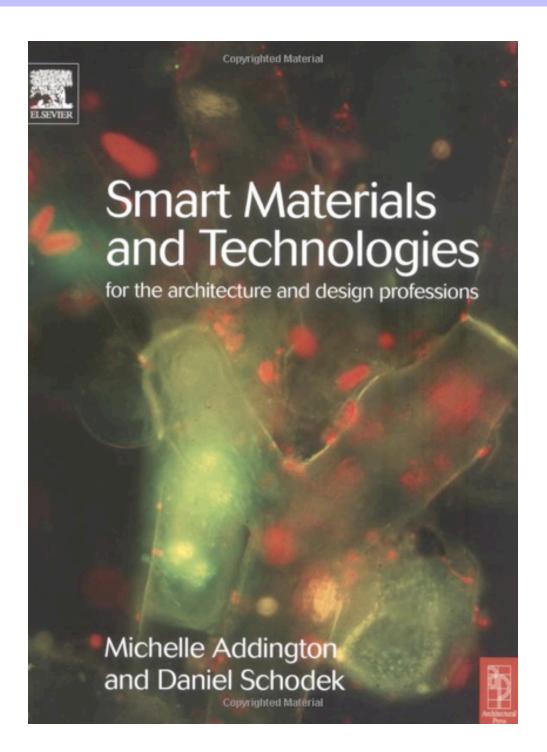
Mitigation Tools for the Next Half-Century

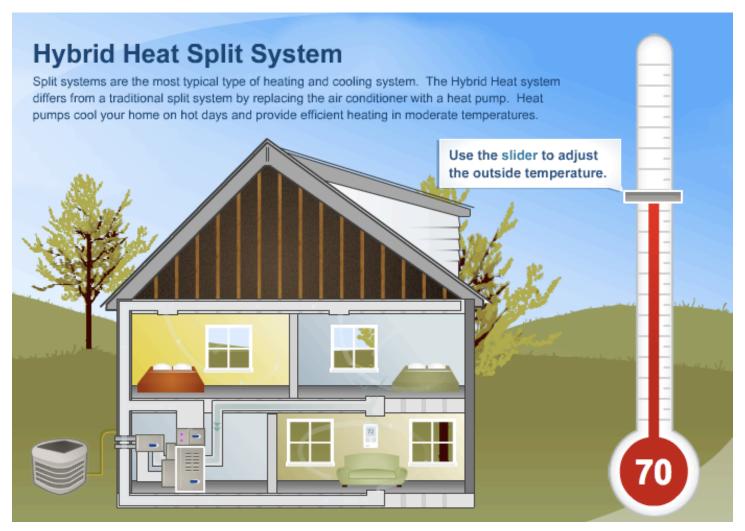
Robert Socolow, Princeton University Future of Energy Series Center for the Environment Harvard University, April 5, 2006

GENERATE ALTERNATIVES (NO JUDGMENT)

Option	Effort by 2054 for one wedge, relative to 14 GtC/year BAU	Comments, issues
Economy-wide carbon-intensity reduction (emissions/SGDP)	Energy efficiency and conservation Increase reduction by additional 0.15% per year (e.g., increase U.S. goal of 1.96% reduction per year to 2.11% per year)	Can be tuned by carbon policy
1. Efficient vehicles	Increase fuel economy for 2 billion cars from 30 to 60 mpg	Car size, power
2. Reduced use of vehicles	Decrease car travel for 2 billion 30-mpg cars from 10,000 to 5000 miles per year	Urban design, mass transit, telecommuting
3. Efficient buildings	Cut carbon emissions by one-fourth in buildings and appliances projected for 2054	Weak incentives
4. Efficient baseload coal plants	Produce twice today's coal power output at 60% instead of 40% efficiency (compared with 32% today)	Advanced high-temperature materials
	Fuel shift	
 Gas baseload power for coal baseload power 	Replace 1400 GW 50%-efficient coal plants with gas plants (four times the current production of gas-based power)	Competing demands for natural gas
 Capture CO₂ at baseload power plant 	CO ₂ Capture and Storage (CCS) Introduce CCS at 800 GW coal or 1600 GW natural gas (compared with 1060 GW coal in 1999)	Technology already in use for H ₂ production
7. Capture CO ₂ at H ₂ plant	Introduce CCS at plants producing 250 MtH_/year from coal or 500 MtH_/year from natural gas (compared with 40 MtH_/year today from all sources)	H ₂ safety, infrastructure
 Capture CO₂ at coal-to-synfuels plant 	Introduce CCS at synfuels plants producing 30 million barrels a day from coal (200 times Sasol), if half of feedstock carbon is available for capture	Increased CO ₂ emissions, if synfuels are produced without CCS
Geological storage	Create 3500 Sleipners Nuclear fission	Durable storage, successful permitting
9. Nuclear power for coal power	Add 700 GW (twice the current capacity) Renewable electricity and fuels	Nuclear proliferation, terrorism, waste
10. Wind power for coal power	Add 2 million 1-MW-peak windmills (50 times the ourrent capacity) "occupying" 30 × 10" ha, on land or offshore	Multiple uses of land because windmills are widely spaced
11. PV power for coal power	Add 2000 GW-peak PV (700 times the current capacity) on 2 × 10 ⁵ ha	PV production cost
 Wind H₂ in fuel-cell car for gasoline in hybrid car 	Add 4 million 1-MW-peak windmills (100 times the current capacity)	H ₂ safety, infrastructure
13. Biomass fuel for fossil fuel	Add 100 times the current Brazil or U.S. ethanol production, with the use of 250 × 10° ha (one-sixth of world cropland)	Biodiversity, competing land use
 Reduced deforestation, plus reforestation, afforestation, and new plantations. 	Forests and agricultural soils Decrease tropical deforestation to zero instead of 0.5 GtC/year, and establish 300 Mha of new tree plantations (twice the current rate)	Land demands of agriculture, benefits to biodiversity from reduced deforestation
15. Conservation tillage	Apply to all cropland (10 times the current usage)	Reversibility, verification

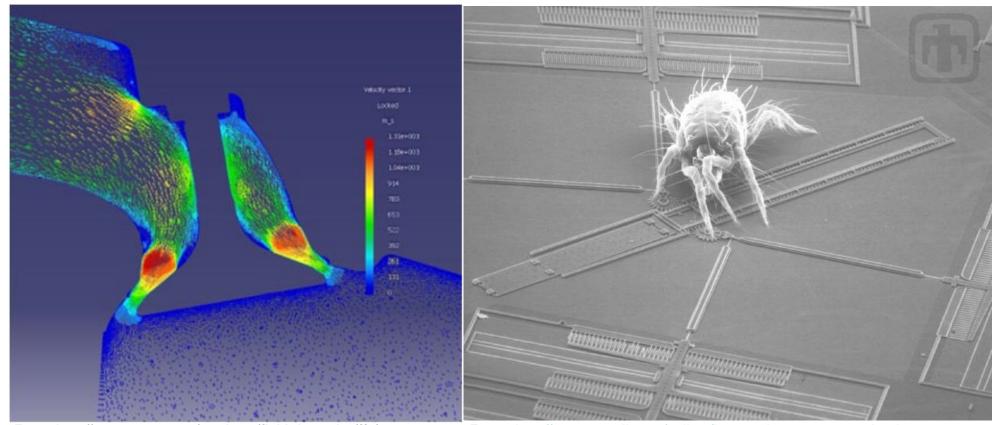
13 AUGUST 2004 VOL 305 SCIENCE www.sciencemag.org


EVALUATE, ITERATE, REFINE (MULTI-FACTORIAL JUDGMENT, INCLUDING AESTHETIC JUDGEMENT)



From: Fast Company Magazine, March 2010

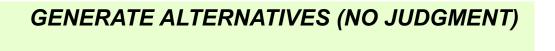
TRANSFORMATIONAL IMPROVEMENT THROUGH DESIGN: GOOD-BYE, WILLIS CARRIER



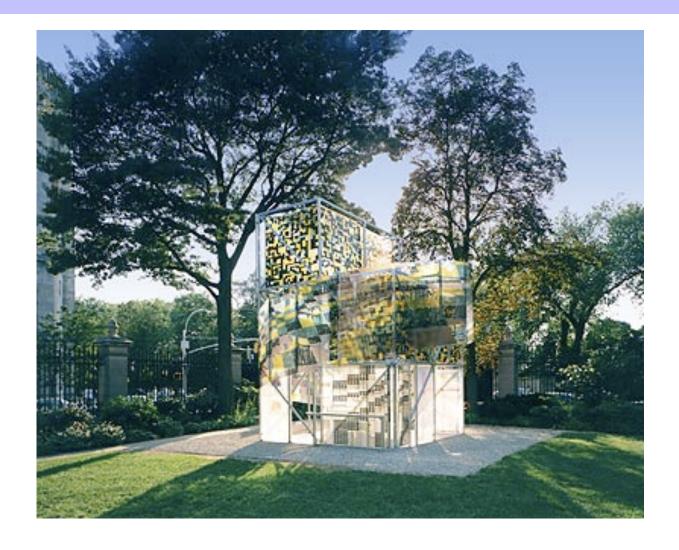
From: http://www.residential.carrier.com/systems/types.shtml

HEAT PEOPLE, NOT AIR.

EVALUATE, ITERATE, REFINE (MULTI-FACTORIAL JUDGMENT, INCLUDING AESTHETIC JUDGEMENT)



From: http://www.ansys.com/products/fluid-dynamics/ffc/


From: http://mems.sandia.gov/gallery/images bugs on mems.html

NON-COINCIDENT PHENOMENOLOGICAL AND PHYSICAL BOUNDARIES USING CFDs AND MEMs

(COMPUTATIONAL FLUID DYNAMICS AND MICROELECTRONMECHANICAL SYSTEMS) (D. Michelle Addington)

TRANSFORMATIONAL IMPROVEMENT THROUGH DESIGN: DESKTOP-PRINTED CURRENT SOLAR INCOME

SMARTWRAP: PHOTOVOLTAICS WALLS PROTOYPE

(KieranTimberlake at the Cooper Hewitt Museum)

Grass dies. Men die. Men are grass.

GRASS USES MORE THAN CURRENT SOLAR INCOME.
IT TURNS WASTE INTO FOOD.

WHAT IS EDIBLE WASTE?

FOR WHOM IS THE WASTE EDIBLE?

FOR WHAT IS THE WASTE EDIBLE?

"If I had asked people what they wanted, they would have said faster horses." Henry Ford